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Abstract

Bending and shearing hinges idealised as discontinuity interfaces in rigid, perfectly plastic analysis are two
important ways to consume plastic deformation energy in dynamic plastic response of a two-dimensional structural
element. The continuity conditions at an interface in a rigid, perfectly plastic beam are examined in the present

paper when retaining the transverse shear force in the yield condition. Various continuity conditions are suggested
at stationary and moving bending and shearing interfaces which may occur during the early response stage of a
rigid, perfectly plastic beam. Both regular and singular yield surfaces give the same continuity conditions. The

e�ects of rotatory inertia on the continuity conditions are discussed. It is shown that transverse shear deformations
in a rigid, perfectly plastic beam are always localized in a stationary shear hinge, which may lead to a distinct
transverse shear, or Mode III, failure. All conclusions for the beam are extended to axisymmetrically loaded circular

plates and cylindrical shells. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

It has been shown that deformation localizations in a rigid, perfectly plastic structural element when

subjected to a transverse dynamic load are represented by plastic hinges during the early response phase

before a membrane state is reached (Jones, 1989, 1997). These plastic hinges, including bending and

shearing hinges, are basically discontinuity interfaces of the generalized displacements. For example, a

bending hinge corresponds to a discontinuity interface of rotation angle, and a shear hinge is associated

with the discontinuity interface of transverse displacement. The behaviours of these discontinuity

interfaces are required in a dynamic response analysis using rigid-plastic method, which has been used
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widely in many structural impact applications (Jones, 1989, 1997). Furthermore, the existences of

bending and shear discontinuity interfaces (or plastic hinges) imply in®nite bending and shearing

deformations within these hinges, which may lead to deformation localization and failure initiation in a

transversely loaded structural element.

Bending and shearing hinges represent general characteristics of the dynamic plastic response of

several two-dimensional structural elements under transverse load before the membrane state is

reached. The continuity conditions at an interface must satisfy the conservation of momentum

across the interface and the kinematic admissibility of the motion at this interface. A large amount

of literature now exists for the dynamic plastic bending response of structural elements (Lee and

Symonds, 1952; Hopkins and Prager, 1954; Hodge, 1955), in which the continuity conditions at

bending hinges in structural elements were discussed. These works are also summarized by Jones

(1997).

It has been shown that a transverse shear force plays an important role in the dynamic plastic

response of structures (Symonds, 1968; Jones, 1997) when subjected to an intensive dynamic

loading. Symonds (1968) discussed the continuity conditions at an interface in a beam when the

in¯uence of the transverse shear force is retained in the yield condition, and these results have

been used widely in the analyses of dynamic plastic response of beams (Jones and de Oliveira,

1979; Nonaka, 1977; Li and Jones, 1995a). However, Symonds' conclusions are based on a

particular square yield surface and need to be re-examined when the stress components at a rigid-

plastic interface lie at a singular position of a yield surface. The dynamic and kinematic continuity

conditions at a discontinuity interface in axisymmetrically loaded circular plates and cylindrical

shells have been obtained by Jones and de Oliveira (1980, 1983) using generalized stresses and

strains when transverse shear force and bending moments are retained in the yield surface, which

were formulated from the general dynamic and kinematic continuity conditions across a

discontinuity surface in continuum (Nowacki, 1978). Some further investigations on continuity

conditions across a discontinuity surface in an elastoplastic solid have been discussed by Drugan

and Shen (1987) and Nemat-Nasser and Gao (1988).

Although, the above mentioned continuity conditions at an interface have been used widely in

theoretical and numerical analyses into the dynamic plastic response of structural elements, and predict

reasonable results, they were, nevertheless, stated neatly for the convenient use in each case of rigid-

plastic interfaces existing in rigid, perfectly plastic structural elements described with generalized stresses

and strains. Symonds (1968) discussed the properties of both moving and stationary bending and

shearing interfaces in rigid, perfectly plastic beams. This work might be extended to axisymmetrically

loaded, rigid, perfectly plastic circular plates and cylindrical shells by a parallel analysis and to a general

yield condition.

The purpose of this paper is to extend Symonds' results for a square yield curve between the bending

moment and the transverse shear force in a beam to a more general yield condition which may be a

regular or a singular one, and to present general continuity conditions for both shear and bending rigid-

plastic interfaces. Furthermore, the conclusions for a rigid, perfectly plastic beam are proved to be valid

for axisymmetrically loaded circular plates and cylindrical shells which are made from rigid, perfectly

plastic materials, even though di�erent generalized stresses are involved in the yield condition. One

signi®cant result of the present work is to prove that plastic shear deformation in a two-dimensional

metal element has the localization feature when its plastic hardening modulus is relatively smaller than

its elastic modulus, i.e., when rigid, perfectly plastic simpli®cation is applicable. Mode III failure

observed and de®ned originally by Menkes and Opat (1973) is the result of localized plastic shear

deformation.
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2. Basic assumptions and equations

When the local theory (de Oliveira and Jones, 1978) is used in an analysis for the dynamic plastic
response of beams without axial deformations, the generalized stresses and their conjugated generalized
strains are M, Q, k and g, respectively, which should satisfy the material stability postulate proposed by
Drucker (1951, 1964). Therefore, for a regular yield surface f �M,Q� � 0, we have

dk � dl
@ f

@M
�1a�

and

dg � dl
@ f

@Q
�1b�

in which dl � 0 for f < 0 (before yielding, or rigid case) or f � 0 and df < 0 (unloading case), and
dle0 for f � 0 and df � 0 (neutral loading case1) when the beam is made from rigid, perfectly plastic
material. In the plastic loading case, the ¯ow directions of the generalized strains are in a direction
normal to a regular yield surface, which has a unique normal direction at every point.

For a singular yield surface consisting of a number of n regular yield functions f p�M, Q�, p � 1, . . ., n,
plastic yielding occurs as soon as at least one of the functions f p is zero. It is evident that all the points
on the yield surface, when only one function f p � 0, are regular and the corresponding generalized
plastic strain increments are the same as those for a completely regular yield surface f p � 0: In those
situations when the generalized stresses are at the intersection of two or more surfaces f p � 0, the ¯ow
rule of plastic yielding for such a singular point is obtained by combining each yield function separately
according to Koiter's suggestion (Koiter, 1953), which leads to

dk �
Xn
1

dlp
@ f p
@M

�2a�

and

dg �
Xn
1

dlp
@ f p
@Q

�2b�

where,

dlp � 0, for f p < 0, �rigid case� or f p � 0 and df p < 0 �unloading case�,

dlpe0 for f p � 0 and df p � 0 �neutral loading case�: �3�
Generally speaking, the ¯ow directions of the generalized strains are uncertain at a singular point, but

are bounded by the normal directions of each adjacent regular surface. This uncertainty is avoided by
using the dynamic equations and the kinematic admissibility of the deformation ®eld.

In the following analyses, it is assumed that the plane cross-section of a beam remains plane before
and after loading. Furthermore, we assume that the ®nal deformation of a beam is not in¯uenced by the
loading sequence of the bending moment and the transverse shear force, and therefore, the de¯ection of

1 For a perfectly plastic material, the initial yield surface cannot expand, therefore, only the neutral loading case exists.
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a beam consists of two parts which are related to the bending and shearing deformations

w � wb � ws: �4�
Di�erentiation of eqn (4) with respect to time leads to

@w

@ t
� _w � _wb � _ws: �5�

From eqns (4) and (5), we de®ne the following quantities for small deformations

@w

@ t
� C� g �6a�

@ 2w

@ t @x
� o� @g

@t
�6b�

and

k � @C
@x

, �6c�

where, C� @wb=@x, o � @C=@ t and k are rotation angle, angular velocity and the curvature associated
with bending, respectively, and g � @ws=@x is the transverse shear strain. It has been shown that the
curvature change and transverse shear de®ned by eqns (6a) and (6c) are consistent with equilibrium
equations (Jones, 1997). It is generally accepted that these assumptions are valid for beams in small
deformation. However, experimental evidences are expected to clarify the actual limitation of these
assumptions.

The conservation of momentum across a discontinuity interface requires (Jones, 1997)

�Q�x� ÿm_x

�
@w

@ t

�
x

�7a�

and

�M�x� ÿIr _x
�
@C
@t

�
x
: �7b�

in which, x is the position of an interface, and _x is the propagation velocity of a moving interface, m is
the mass per unit length of a beam, Ir is the rotatory inertia per unit length of a beam, and [ ]x is the
di�erence of a physical quantity across the discontinuity interface.

3. Results for a regular yield surface

Now, the kinematic continuity conditions across a moving interface are (Jones, 1997; Symonds, 1968)

�w�x� 0 �8a�

and

�C�x� 0, �8b�
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which imply that�
@w

@t

�
x
�_x

�
@w

@x

�
x
� 0 �9a�

and �
@C
@t

�
x
�_x

�
@C
@x

�
x
� 0 �9b�

which allows eqns (7a) and (7b) to be written as

�Q�x� m_x
2�g�x �10a�

and

�M�x� Ir
_x
2�k�x �10b�

when using �@w=@x�x��C�x��g�x��g�x:
Consider an interface moving from a perfectly plastic zone to a rigid segment, as shown in Fig. 1(a).

The points on the rigid side of the interface will yield when reached by the moving interface. Eqns (10a)
and (10b) may be re-written as

dQ � m_x
2
dg �11a�

and

dM � Ir
_x
2
dk �11b�

where, dA means the increment of a physical quantity A on the rigid side of an interface shown in
Fig. 1(a).

For a rigid, perfectly plastic material,

df � @ f

@Q
dQ� @ f

@M
dM � 0 �12�

Fig. 1. Discontinuity interfaces in a rigid, perfectly plastic material: (a) moving from a perfectly plastic zone to rigid zone; (b) mov-

ing from a rigid zone to a perfectly plastic zone.
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during a loading process. According to eqns (11a) and (11b) and eqns (1a) and (1b), (12) gives

_x
2

dl

"
m

�
@ f

@Q

�2

�Ir

�
@ f

@M

�2
#
� 0 �13�

which indicates that dl=0 because _x 6� 0, m > 0, Ir > 0 and @ f=@Q and @ f=@M cannot equal zero
simultaneously. Thus, dg � dk � 0 or �g�x � �k�x � 0, which means that there is no discontinuity at such
an interface in a rigid, perfectly plastic beam. It transpires that a discontinuity in g or k cannot develop
at an interface which moves from a plastic zone to a rigid segment. This conclusion has been presented
by Symonds (1968) for a rigid, perfectly plastic beam when the generalised stresses are on the regular
points of a square yield surface.

If an interface in a rigid, perfectly plastic beam moves from the rigid segment to a plastic zone, as
shown in Fig. 1(b), the plastic side of the interface will become rigid as the interface moves across it.
This is an unloading process for the region on the plastic side of interface, which, therefore, requires
dl=0 in eqns (1a) and (1b), or

�g�x� �k�x� 0 �14�

and

�Q�x� �M�x� 0: �15�

In this case, _x may not be zero, as observed in many theoretical results for the dynamic plastic response
of beams. One example is the second response phase for the simply supported beam in Section 3.2 of
Jones and de Oliveira (1979).

If Ir � 0, eqn (13) with _x 6� 0 requires @ f=@Q � 0 when dl 6� 0, which leads to �g�x � 0: And,
therefore, the shear interface is stationary. However, in this case, �k�x may not equal zero as an interface
in a rigid, perfectly plastic beam moves from a plastic zone to a rigid segment. The appendix of Zhu, et
al. (1986) gave an example of this case for the bending response of a simply supported beam subjected
to a general pulse pressure loading. Similar results for a circular plate was obtained by Youngdahl
(1971).

Eqns (6a), (8b) and (14) give �@w=@x�x��C�x��g�x�0, and, therefore,�
@w

@t

�
x
� 0

according to eqn (9a) whether Ir equals zero or not. Thus, the kinematic continuity conditions across a
moving interface in a rigid, perfectly plastic beam (both cases in Fig. 1) are

�w�x� 0 �16a�

� _w�x� 0, �16b�
which, together with eqn (15) have been used in the previous theoretical analyses reported by Symonds
(1968), Jones and de Oliveira (1979), Nonaka (1977), and Li and Jones (1995a). It may be shown that
eqns (16a) and (16b) are the su�cient and necessary conditions for the satisfaction of eqns (8a) and (8b)
in the case of Fig. 1(a), and eqns (16a) and (16b) are equivalent to eqns (8a) and (8b) for the case of
Fig. 1(b) under the assumption that �g�x � 0 when _x 6� 0 i.e., a shear interface is always stationary,
which is an important conclusion of previous analyses. Thus, eqns (16a) and (16b) may be used, instead
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of eqns (8a) and (8b), as kinematic continuity conditions across the interface moving from a plastic zone
to a rigid segment in a rigid, perfectly plastic beam.

The above analyses show that a shear interface in a rigid, perfectly plastic beam is alwasys stationary
whether or not Ir � 0: This implies that the transverse shear deformation is always localized in its
initially formed zone throughout the dynamic plastic response of beams. The characteristic length of this
zone will be very small compared with the beam length, because the size of the shear deformation zones
does not increase during the subsequent beam response. All transeverse shear deformations will be
localized in this zone, which, therefore, may be idealized as a plane with transverse shear sliding. The
sliding displacement at an idealized plane is the relative displacement at two sides of the transverse shear
deformation zone, as illustrated in Fig. 2(a, b). Due to the antisymmetric property of the transverse
shear force about the midplane of a shear deformation zone, the kinematic continuity condition across
the transverse shear sliding plane is

�C�x� 0, �17�
and eqn (15) should be satis®ed for either Ir 6� 0 or Ir � 0:

It should be noted that the assumption of shear sliding does not mean that the actual severance
occurs at the shear sliding interface. �w�x 6� 0 is an idealized result when we neglect the size of the
transverse shear deformation zone, as discussed above.

For a stationary bending interface, only the transverse de¯ection needs to be continuous, i.e., �w�x � 0
which is equivalent to � _w�x � 0 according to eqn (9a). Eqns (7a) and (7b) require �Q�x � �M �x � 0:

In summary, the continuity conditions at an interface in a rigid, perfectly plastic beam may be
expressed as

1. Moving bending interface

�Q�x� 0, �M�x� 0, � _w�x� 0, �w�x� 0; �18a�±�18d�
2. Stationary bending interface

Fig. 2. (a) Idealized shear hinge; (b) construction of a shear hinge.

Q.M. Li / International Journal of Solids and Structures 37 (2000) 3651±3665 3657



�Q�x� 0, �M�x� 0 and � _w�x� 0
ÿ
or �w�x� 0

�
; �19a�±�19c�

3. Stationary shear slides

�Q�x� 0, �M�x� 0 and �C�x� 0

 
or

�
@w

@x

�
x
� 0

!
; �20a�±�20c�

4. Stationary bending and shear interface

�Q�x� 0 �21a�
and

�M�x� 0 �21b�

All these continuity conditions in each case are identical to those presented by Li and Jones (1995a) and
lead to the special cases examined by previous studies on the transverse bending and shear responses of
a rigid, perfectly plastic beam.

In the dynamic plastic response of a structure element subjected to lateral loads, bending deformation
is always the important mode to absorb kinematic energy. However, with the increase of loading rate
and intensity, transverse shear becomes more important and appears at an early stage. Membrane state
might be reached for large loads at a ®nal stage. Menkes and Opat's (1973) experimental results gave
good examples. The absorbed energies by di�erent response modes for plates are shown by Corran et al.
(1983) and Jones et al. (1997).

During the early response stage, rotatory inertia associated with bending movement may contribute to
the global response of a beam, which has been studied by several authors (Jones, 1989, 1997). It was
concluded that rotatory inertia e�ects are not of practical signi®cance, while transverse shear forces are
more important for the dynamic case than they are for static loads (Symonds, 1968; Jones, 1989). The
current study indicates that rotatory inertia does not in¯uence the shear hinge feature, but a kinky
bending hinge might be formed when neglecting the rotatory inertia.

4. Results for a singular yield surface

If one of the parameters dlp � 0 ( p = 1, 2) for a singular yield surface, then the associated terms in
eqns (2a) and (2b) are eliminated, and the remaining terms in eqns (2a) and (2b) are the same as eqns
(1a) and (1b). Therefore, the results for this situation is the same as those for a regular yield surface.

In the case when dlp > 0 ( p = 1, 2), then only the loading situation in Fig. 1(a) requires discussion.
The results for the unloading situation in Fig. 1(b) are similar to those for a regular yield surface.

Now, eqn (3) with dfp � 0 for neutral loading requires

@ f 1
@Q

dQ� @ f 1
@M

dM � 0, �22a�

and

@ f 2
@Q

dQ� @ f 1
@M

dM � 0, �22b�

Eqns (22a) and (22b) with eqns (11a), (11b), (2a) and (2b) may be expressed in the form
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"
m

�
@ f 1
@Q

�2

�Ir

�
@ f 1
@M

�2
#

dl1 �
�
m
@ f 1
@Q

@ f 2
@Q
� Ir

@ f 1
@M

@ f 2
@M

�
dl2 � 0, �23a�

and �
m
@ f 1
@Q

@ f 2
@Q
� Ir

@ f 1
@M

@ f 2
@M

�
dl1 �

"
m

�
@ f 2
@Q

�2

�Ir

�
@ f 2
@M

�2
#

dl2 � 0, �23b�

provided _x 6� 0:
The condition for dlp 6� 0 ( p=1, 2) is"

m

�
@ f 1
@Q

�2

�Ir

�
@ f 1
@M

�2
#"

m

�
@ f 2
@Q

�2

�Ir

�
@ f 2
@M

�2
#
ÿ
�
m
@ f 1
@Q

@ f 2
@Q
� Ir

@ f 1
@M

@ f2
@M
�2 � 0

or

@ f 1
@Q

@ f 2
@M
ÿ @ f 1
@M

@ f 2
@Q
� 0 �24�

when m 6� 0 and Ir 6� 0:
Eqn (24) implies that

n
*

1 � n
*

2 �
�
@ f 1
@Q

i
*� @ f 1

@M
j
*

�
�
�
@ f 2
@Q

i
*� @ f 2

@M
j
*

�
� 0 �25�

where, n
*

1 and n
*

2 are the normal directions of f 1�M, Q� � 0 and f 2�M, Q� � 0 at the intersection point,
respectively, and i

*

and j
*

are unit vectors of the local orthogonal coordinates. eqn (25) implies that n
*

1 is
parallel to n

*

2: Therefore, the intersection point of f 1�M, Q� � 0 and f 2�M, Q� � 0 must be a regular
point if eqn (24) is satis®ed. This situation has been discussed in Section 3. Thus,

@ f 1
@Q

@ f 2
@M
ÿ @ f 1
@M

@ f 2
@Q
6� 0 �26�

which leads to a unique zero solution for eqns (23a) and (23b)

dl1 � 0 and dl2 � 0

and thus, the following conditions are reached

�g�x� �k�x� 0 and �Q�x� �M�x� 0 �27a�±�27d�

at an interface in a rigid, perfectly plastic beam by using eqns (2a) and (2b) and eqns (10a) and (10b).
It transpires that all the conclusions for a moving interface at a singular yield point for a rigid,

perfectly plastic beam are the same as those for the regular yield surface studied in Section 3 when Ir 6�
0: This conclusion is also true for the continuity conditions at both moving and stationary interfaces.

If Ir � 0, then eqn (10b) gives

�M�x� 0 �or dM � 0�, �28�

while, eqns (22a) and (22b) become
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@ f 1
@Q

dQ � 0, �29a�

and

@ f 2
@Q

dQ � 0, �29b�

If @ f 1=@Q � 0 and @ f 2=@Q � 0 occur simultaneously, �g�x � 0 according to eqn (2b). Otherwise, i.e.,
@ f 1=@Q and @ f 2=@Q cannot equal zero simultaneously, eqns (29a) and (29b) will lead to dQ � 0, or

�Q�x� 0 �30�
which gives

�g�x� 0 �31�

from eqn (10a) if _x 6� 0: Therefore, _x � 0 for �g�x 6� 0:
Again, a shear interface must be stationary, and eqn (10b) implies the possibility that a bending

interface may move, which is the same conclusion as that reached for a regular yield surface. Thus, eqns
(18)±(21) are valid for both regular and singular yield surfaces.

5. Continuity conditions for circular plates and cylindrical shells

The yield surface, which is shown in Fig. 3, has the following properties

@ f 1
@P
� 1,

@ f 1
@M
� 0,

@ f 1
@Q
� 0,

@ f 2
@P
� 0 �32a�±�32d�

Fig. 3. Yield surface.
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in which, P �My (or N ) for circular plate (or cylindrical shell); where My is the circumferential bending
moment in a circular plate and N is the circumferential member force in a cylindrical shell.

For both an axisymmetrically loaded circular plate and an axisymmetrically loaded cylindrical shell,
eqns (1)±(11) will be satis®ed according to the basic equations in Jones and de Oliveira (1980, 1983).2

Furthermore,

ky � C
r
, for a circular plate �33a�

and

ey � ÿw

R
, for a cylindrical shell �33b�

where, r is the radial coordinate of circular plate and R is the mean radius of a cylindrical shell.
In the following discussion, f 2�Q, M, P� � 0 is assumed to be a regular surface. However, it does not

in¯uence the results when f 2�Q, M, P � � 0 is a singular one because of the conclusions obtained in
Section 4.

The assumption of a rigid, perfectly plastic material requires

df 1 �
@ f 1
@Q

dQ� @ f 1
@M

dM� @ f 1
@P

dP � @ f 1
@P

dP � dP � 0, �34a�

and

df 2 �
@ f 2
@Q

dQ� @ f 2
@M

dM� @ f 2
@P

dP � @ f 2
@M

dM� @ f 2
@Q

dQ � 0, �34b�

while, the plastic ¯ow rule from eqn (2) gives

dg � dl1
@ f 1
@Q
� dl2

@ f 2
@Q
� dl2

@ f 2
@Q

�35a�

dk � dl1
@ f 1
@M
� dl2

@ f 2
@M
� dl2

@ f 2
@M

�35b�

and

dg � dl1
@ f 1
@P
� dl2

@ f 2
@P
� dl1 �35c�

where, g � ky �or ey�:
It is evident that eqns (34b), (35a) and (35b) together with eqns (1)±(10) are the same as the

corresponding equations for a beam. The extra eqns (33a) and (33b) may be satis®ed by adjusting dl1
which has no in¯uence on dk and dg: Thus, the continuity conditions for both a circular plate and a
cylindrical shell are the same as those for a beam, except for the additional conditions from eqn (34a)

�P�x� 0: �36�

2 For example, eqns (7a) and (7b) and eqns (9a) and (9b) here are the same as eqns (4b) and (4a) and eqns (6b) and (6a) in Jones

and de Oliveiria (1980, 1983), respectively, when M, k and x are replaced by Mr, kr and r for circular plate.
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It should be noted that the dynamic plastic response for circular plates and cylindrical shells usually
lead to f 1�Q, M, P � � 0 and dg � dl1 > 0 throughout the entire area of a plate or a shell. In this case,
the continuity conditions (eqns (18)±(21)) are not related to an interface between rigid regions and
plastic zones in a rigid, perfectly plastic material, but to an interface within a plastic deformation zone.
These conclusions have been examined for the dynamic plastic analyses of circular plates (Li and Jones,
1994) and cylindrical shells (Li and Jones, 1995b).

6. Discussion

Rigid, perfectly plastic idealization has been used successfully to predict the dynamic plastic responses
of various structural elements. An important concept in this analytical method is the plastic hinge,
through which external or kinetic energy is consumed by plastic dissipation. Material failures are
observed frequently at localized deformation zones, which are formed by bending and shear hinges or
their combinations, and sometimes, associated with the membrane deformation. The conclusion of the
present paper shows that a shear hinge behaves like a `deformation trap' because of its stationary
feature. Many evidences have shown that kinetic energy is easier to be consumed in a plastic shear
hinge, if it can be initiated, than in a bending hinge or a membrane state (Jones, 1997). Thus, localized
shear response and possible shear failure become the dominant mode when the transverse shear
conditions are satis®ed, which are normally associated with dynamic loads with su�cient intensities.

A rigid, perfectly plastic analysis is an e�cient way to give an approximate estimation for inelastic
structural responses. The shortcoming of a rigid, perfectly plastic analysis is its limitation to give
deformation distributions within a plastic hinge although some simpli®ed methods have been introduced
to overcome this di�culty. A plastic bending response appears normally during the early response phase
when the membrane state has not been developed. Nonaka (1967) used slip line theory to examine the
plastic hinges in fully clamped beams when the in¯uence of the transverse shear stress on plastic yielding
is neglected. It was found that the mean length of a plastic bending hinge depends on the membrane
in¯uence. Shen and Jones (1992) considered the in¯uence of transverse shear and an approximate linear
relationship between dimensionless hinge length and dimensionless dissipation density of plastic shear
work within a hinge was suggested based on Menkes and Opat's (1973) experimental results. Most of
the existing works, unfortunately, concern the construction of a bending hinge, except Wang and Jones
(1996) who proposed an one-dimensional transverse shear propagation analysis based on rigid, plastic
strain hardening model. Recently, the formation of a shear localization in two-dimensional elements was
studied using FE simulation (Li and Jones, 1998a), in which shear hinge lengths for di�erent structural
elements and their valid application range were clari®ed. In fact, several studies have used these results
to obtain shear strains within the shear hinge in order to predict failure initiation (Wen et al., 1995;
Wen and Jones, 1996; Jones et al., 1997; Li and Jones, 1998b).

Plastic shear deformations are always found around `hard point' including supports and loading
periphery (Du�y, 1989), and localised into a narrow zone idealized as a plastic shear hinge. Both
experimental (Menkes and Opat, 1973; Ross et al., 1977) and analytical (Symonds, 1968; Jones, 1997)
works suggested that a plastic shear hinge can be initiated by rapid and high intensity loading during
the early response phase. A good example of a typical shear dominant zone was given by Zener (1948),
which indicates that a uniform distribution of simple shear is the idealised geometry feature of a plastic
shear hinge. The existences of bending and shear hinges in a structural element subjected to lateral
impact load have been shown by several experimental evidences. For example, propagation of plastic
bending hinge in an impulsively loaded beam was presented by Florence and Firth (1965), where
stationary plastic bending hinges were developed at supports and two travelling bending hinges moved
toward the mid-point of the beam. Menkes and Opat (1973) noticed three di�erent response and failure
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modes with increasing impulsive intensities, i.e.,

i. Mode I large inelastic deformation,
ii. Mode II tearing (tensile failure),
iii. Mode III transverse shear failure,

which have been studied by Jones (1976, 1989) using rigid, perfectly plastic analyses where the
continuity conditions obtained in the present paper were employed. Shear hinges were found and
measured by Shadbolt et al. (1983) at the projectile impact periphery in studying plate perforations,
which has been used to predict failure initiation in plate perforation (Liu and Stronge, 1995).

Plastic bending and shear hinges are based on the rigidity assumption in rigid, perfectly plastic
analysis. However, more and more evidences have shown that elasticity may play an important role in
structural response (Symonds and Fleming, 1984; Symonds and Yu, 1985; Reid and Gui, 1987; Yu,
1993; Yu et al., 1997). The formation of a plastic hinge results from the interaction of re¯ected
elastoplastic waves. Thus, the validity of current conclusions are restricted within the valid limitaion of
rigid, perfectly plastic assumption.

Loading discontinuities, which may appear due to the existence of concentrated loads, are not
considered in basic eqns (7a) and (7b). The conclusions obtained in the present paper are only
applicable to pressure loads with ®nite intensity. However, concentrated load is the idealization of a
distributed pressure load with high intensity and small acting area. When the loading area dimension is
larger than the characteristic size of a plastic hinge and the loading intensity is ®nite, there is no load
discontinuties across a hinge length. But, with the increase of load intensity, local phenomena like
indentation may occur, which are not considered in the analysis. Thus, special attention should be paid
in these cases (Jones et al., 1997).

Although plastic bending and shear hinges have been used widely in dynamic plastic response of
structural elements to consume plastic energies and to propagate plastic deformations, there is a paucity
of experiments to examine the existence and the feature of bending and shear hinges. Furthermore,
when a rigid, perfectly plastic model is used in failure analysis, the details of a plastic hinge are
necessary. Thus, further works are required to study the dynamic features, geometrical structures and
forming processes of plastic bending and shear hinges in structural elements, both experimentally and
numerically.

7. Conclusions

A complete set of continuity conditions at the rigid±plastic interface is proposed in the present paper
for several structural elements, made form rigid, perfectly plastic material. It is shown that Symonds'
conclusions (Symonds, 1968) on beam for a square yield curve are valid for a general yield curve which
satis®es Koiter's assumption (Koiter, 1953). This implies that any transverse shear interfaces are always
stationary and transverse shear deformations are localized in a narrow zone which is idealized as a zero-
size plane with transverse shear sliding, called shear hinge. The results obtained in the present paper are
valid for both beams and axisymmetrically loaded circular plates and cylindrical shells during their
response phase before membrane state starts.
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